
The der ivat ive of (7) has, by virtue of the equations of perturbed motion,  the form 
V" ~--- t o x 2 " V  3 / l 2 = 0 ,  and this is correct  since Vs = 0. Therefore,  on the basis of the 
Rumiantsev theorem [4] the inequal i ty  (8) is a sufficient condit ion of s tabil i ty of theunper .  

turbed motion (9.) with respect to the variables p - -  to71, q, r, 72 and ~'8- 
The unstable permanent  rotations (2) can be separated out by considering the l inear -  

ized  system of  equations of perturbed motion 

X 1" ~ - - -  ( i  - -  6) to (lax s'~ 12X s ) -  us°Y2-- /SUss°Ys, X s" = (6 - -  i )  to (/$X t J ~  ( 9 )  

l l z s )  -~ ua°Yx, Yl" = - -  lsxs -~- lsx3 -}- to (lay s - -  lgYs), Y2" = laxt - -  

tolaYx, Ya" ~- - -  lzxx nu tolsYx, x 3" = 0 

The characteri-ctic equat ion o f (9 )  has the form 

04 ( °2 -J- go) = 0, go = (02 [i  -J- ( i  - -  6) 2/a ~] - -  uaa°/2 ° -~- 2us°ls (10) 

It  iS c lear  that  when go < 0 ,one  of the roots of  (10) is Po~t ive and the motion (2) 
in its first approximat ion writ, by the Lialmnov theorem on stabi l i ty ,  be unstable.  
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The results of this paper can be regarded as a transposition of the results of Che- 
taev obtained for the f inite systems of dif ferent ia l  equations [1] to the denumer-  
able systems of the f inite difference equations. We use the concepts of [2].  

Let us consider the system oo 

y, (ra + i )  = ~ P.t (ra) Yt (ra), m = 0, i . . . .  (1) 
i : 1  

Hem and henceforth s = t ,  2 . . . . .  tim functions Psi am bounded and the series 
[ P.t  (m) J -4- [ Psi (m) J --~ • • • converge uniformly in m for 0 ~ m ~ oo. We define 

y (m) U = sup.  I y.  (~) I. 



Certain particular cases of stability in first approximation 1~ 

We use the following system with constant coefficients:  

x (m + i) = ~ %~t  (m) 
tffil 

as the approximate system for solving the problem of stability of (i). We set 
Oo 

(2) 

i=1 
We shall say that the zero (unperturbed) solution zs (m) ~ 0 of system (2) is exponent- 
ially stable if all perturbed solutions of this system obey for all m ~ m0 the law [3] 

I] z (m) a ~ B ~x (me) ~exp [--  a (m- -  rno)] (4) 

where B ~ t and c~ > 0 are independent of m e and unaffected by the choice of z, (m0) 
from the region ~ z (me) ~ < e, where e is sufficiently small. We shall say in a similar 
manner of the solutions of the system (1). 

T he  o r e  m 1. Let the system (1) and system (2) with constant coefficients be both 
given, and connected by the relation 

sup. supm{~_a[p,,(m)--c.,[,_ me~m~oo, , = i , 2 , . . . } ~ M ~ c o  (5) 

If  the zero solution of (2) is exponentiaily stable, then for sufficiently smail M the zero 
solution of (1) will also be exponentially stable. 

P r o o f .  Let 
2' = a -~ In 4B nu T (~ ~ 0) (6) 

8 = ~ I (2B) (q) 

where a and B are quantities given by (4) and e is an arbitrary positive number for 
which the inequality (4) holds. 

We consider the solutions Yl (m) and z s (m) of (1) and (2), determined by the initiai 

conditions II~ (,no) M = II x (me) I ~ 8 (8) 

From (4), taking into account (8) and (q) we obtain 

llz(m)~<81Z for m~me (9) 

Further, taking into account (8) and (6) and setting m = m0 -~- T ,  we obtain from (4) 

I x(me + T) I I~  8/4 (10) 
Next we shall prove the inequality 

{ M88 [(L + M)"-"" -- i]l(L + M --i) 
Am ~Uy (m)-- x (m)ll ~ when L-I-M=/=! (11) 

M6B (m -- too) when L -k M --=- i 

We write (1) in the form 
cO o o  

y, (m -I- I) = ~ c.iy I (m) -~- Z [P,i (m) - -  ¢,i ] Yl (m) (12) 
I=1 I=1 

From(12) and (2),u$ing (3) and (5) we obtain Am+I~LAm-~M~y(m)|. Since 
W z (m) II g A~ + II Y (m) II, taking (4) and (8) into account, we find that Artt+ 1 ~ (L -~ 
M ) A  m -[- MgB. P~placing m in this inequality by m o, ra o -[- i ,  m o q-  2, . . . ,  m - -  t 

L Ic,,I (3) 
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and taking (8) into account, we obtain the inequality (ii). 
Obviously, we can choose M in (11) such that 

Am<~6/4 for mo~<m~<mo-{-T (13) 

Further, using (13), (9), (7) and (10), we obtain 

[[y (m) ~<s for m o ~ < m ~ m o + T  
[I y (,no + T)]l < ~/2 

We take m o -~- T as the init ial  value and consider the solutions of (1) and (2) deter- 
mined by the initial  conditions 

BY (rno + T)H---- I x(,no + T) U< 6/2 

and repeat  all the above arguments beginning with the inequality (8). Let us assume that 

Uy(ra)[l<8/2n-x for m 0 - ~ - ( n - - i  ) T. .<mgmo.n t -nT  
and 

[] y (too + nT) [[ <~ 8/2n 

We shall show that in this case we have 

]]Y(m) II<e/2n for m,o+nT ~rn~,mo--~(n--~-i) T (14) 

IJ Y [m0 + (n + i) T l ~ < 5/2 n+z (15) 

Taking m o -}- nT as tlm initial value, we consider the solutions of (1) and (2) determined 
by the initial conditions 

]] Y (~'o) [I = ~ x (too) [] < 6 / 2 n ('no = mo "~- nT) 

From (4) with m ~ ~o and 1[ x ('no) ]] < 8 / 2 n < 8 / (B2 n+z) we obtain 

11 x (m) II < e/2n+1 for m >/W~ (16) 

after which, from (4) with m = ,no + T and II x ( ~ )  ~ < 6/2 n with (6) taken into account, 
we obtain z (~o -{- T)[1 < 6/2n+' (17) 

The inequality (13) then becomes 

5 , , , < 6 / 2  "+~ for m ~  (18) 

Using (18),(16) and (q) we obtain 

Ily(m)ll<812" for ~o~<m~<WnonUT (19) 

Further, using (18) with m --  ~o -{- T and (17), we obtain 

y (W~o -}- T) ~ < 6 / 2  "+t (20) 

Substituting into (19) and (20) the value ~o = t o o  -[- nT, we obtain the inequalities (14) 
and (15), and from (14) we obtain 

[I Y (m) [I < 28 exp [ - -  (m - -  ,no) In 2 / ( a  -1 In 4 B  + T)] 

which proves the theorem. 
We con~der,  in addition to the systems (1) and (12) , the system 

y, (m + i) = ~ ,  P,i (m) y, fin) + / t  ira, y~ (m)l (21) 

([]R(m, yi)U<'f~y[], i = i , 2  . . . .  ) 
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in a region D :lJ Y (m) ~ ~ H, m ---- 0, i . . . .  (H ---- const). 
T h e o r e m  2. Let the systems (21) and (2) be connected by a relation of the type 

(5). If the zero solution of the system (2) is exponentially stable, then for sufficiently 
small ~? and M the zero solution of the system (21) will also be exponentially stable. 

The proof of Theorem 2 differs from that of Theorem 1 only in the fact that M in 
the inequality (11) is replaced by M ~- 7. 

The author is thankful to G. S. Iudaev for statement of the problem. 
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We prove the equivalence of the equations of motion of nonholonomic systems 
with constraints linear in velocities, obtained by various methods. At present, the 
equations of motion of nonholonomic systems exist in various forms. Naturally, 
the question of their identity to each other was brought up in [ 1 -  3], and the 
problem was also discussed in [4 --  8] and in the dissertation of M. I. Efimov (* ) .  

1. The author of [1 --  3] postulates that the final form of the equations of motion of 
a system obtained by transforming the general dynamic equations depends on the point 
at which the equations of nonholonomic constraints are taken into account. He states 
that in the general case of arbitrary nonholonomic systems with constraints which are 
linear in velocities, the equations constructed by different methods cannot be guaranteed 
to be identical. Volterra [9], Appell [10] and MacMillan [11] derive the equations of 
motion from the general dynamic equation in Cartesian coordinates and bring the non- 
holonomic constraints into the discussion at once. Harnel [12], Chaplygin [13] and Voro- 
nets [14] bring in the nonholonomic constraints after the general clynamzc equattons nave 
been transformed to the generalized coordinates. In the opinion of the author of [1--3], 
the equations of motion obtained using the methods of Volterra, Appell and MacMillan 
on one hand, and the methods of Voronets (Chaplygin) and Hamel on the other hand,~rill 
not, in general, be identical, i . e .  the systems of equations will not be equivalent to each 

_ j ,  , 

*) E f i m o v ,  M. I .  , On the Chaplygin equations for nonholonomic systems. Gandi- 
date's dissertation, Inst. mekhaniki, Akad. Nauk SSSR, 1953. 


